Schlagwortarchiv für: Tropische Stürme

Hurrikan BERYL

Bereits vor einigen Wochen wurde eine ereignisreiche Hurrikan-Saison für dieses Jahr prognostiziert (siehe dazu Thema des Tages vom 25.06.2024). Nach Tropensturm ALBERTO, der am 20.06.2024 auf Mexiko traf, sind nun gleich zwei tropische Stürme gleichzeitig aktiv und ein dritter könnte weiter östlich im Nordatlantik in den nächsten Tagen entstehen. Der tropische Sturm CHRIS ist verhältnismäßig schwach ausgeprägt und sehr kurzlebig. Er befindet sich momentan an der Küste Mexikos und wird bereits in den nächsten Stunden zur tropischen Depression herabgestuft werden. Er bringt dem zentralamerikanischen Land vor allem viel Regen und an der Küste auch orkanartige Böen.

Anders verhält es sich mit dem Hurrikan BERYL, der schon einige Rekorde geknackt hat. Gestern wurde der extrem gefährliche Tropensturm auf der Saffir-Simpson Skala zu einem Kategorie 4 Hurrikan hochgestuft. Er gilt damit als der erste Kategorie 4 Hurrikan der jemals im Juni im Nordatlantik aufgetreten ist. Zudem ist die Entwicklung von BERYL ungewöhnlich, da er für die Jahreszeit untypisch, sehr weit im Osten entstanden ist (bei 49,3° westlicher Länge). Bis jetzt gab es vermutlich keinen Hurrikan der im Juni östlicher seinen Ursprung fand. Den aktuellen Rekord hielt bis jetzt der Trinidad Hurrikan aus dem Jahr 1933 inne. Dieser entstand etwa auf dem 59. Längengrad westlicher Länge.

DWD Hurrikan BERYL

Grund für die Entwicklung des Hurrikans waren die außergewöhnlich hohen Meeresoberflächentemperaturen im Nordatlantik und der damit verbundenen sehr feuchten Atmosphäre. Durch geringe Windscherung konnten sich initiierte Gewitter gut organisieren und formierten eine tropische Depression. Diese entwickelte sich rapide innerhalb von nur wenigen Stunden zum Tropischen Sturm. Die rasante Entwicklung setzte sich weiter fort und führte schließlich zum stärksten Juni-Hurrikan im Nordatlantik. Damit wurde Hurrikan Audrey aus dem Jahr 1957 von ihrem Platz verdrängt.

DWD Hurrikan BERYL

Am heutigen Montag beeinflusst Hurrikan BERYL Barbados, die südlichen karibischen Inseln Grenada sowie St. Vincent und die Grenadinen. Dabei treten Windgeschwindigkeiten von bis zu 215 Kilometern pro Stunde auf. Der tiefste Druck im Zentrum des Sturms lag bis jetzt bei 958 Hektopascal. Es werden für die südliche Karibik Regenmengen zwischen 80 und 150 Litern erwartet. Im weiteren Verlauf verlagert sich der Sturm mit etwa 30 Kilometern pro Stunde westwärts weiter über die Karibische See hinweg. Das Einflussgebiet umfasst einen Bereich mit Radius von 200 Kilometern um das Auge des Sturms. Dabei werden neben extremen Orkanböen, Sturmfluten, extrem heftigem Starkregen auch hoher Seegang erwartet.

Der Hurrikan befindet sich wahrscheinlich bereits auf seinem Höhepunkt. Bis Dienstagabend, soll er laut Prognosen „nur noch“ maximal Kategorie 2 auf der Saffir-Simpson Skala erreichen. Doch auch als nur noch mäßiger Hurrikan werden noch in Böen Windgeschwindigkeiten bis zu 170 Kilometern pro Stunde prognostiziert. Zum Wochenende erreicht der Sturm dann voraussichtlich die südliche Küste Mexikos oder die nördliche Küstenlinie Belizes.

DWD Hurrikan BERYL 1

Der Höhepunkt der Hurrikan-Saison liegt statistisch zwischen Mitte August und Ende September. In diesem Zeitraum traten am häufigsten Hurrikans der Kategorie 5 auf, was auch an den Wassertemperaturen liegt, die im Mittel vergleichbar mit den aktuellen Meeresoberflächentemperaturen sind. Es bleibt also abzuwarten, wie sich die diesjährige Hurrikan-Saison weiterentwickelt.

MSc Sonja Stöckle
Deutscher Wetterdienst
Vorhersage- und Beratungszentrale
Offenbach, den 01.07.2024
Copyright (c) Deutscher Wetterdienst

Ein Zyklus, der das Auge tropischer Stürme mit der Zeit verändert

In einigen Themen des Tages der jüngeren Vergangenheit (Stichwortsuche: “Stadion-Effekt”) wurde besonders die Herangehensweise der Intensitätsabschätzung tropischer Stürme betrachtet. Dadurch geriet die Dynamik dieser Stürme etwas in den Hintergrund, weshalb wir uns heute mal etwas mehr diesem Thema widmen wollen. Dazu betrachten wir einen Zyklus, der immer wieder besonders bei kräftigen Tropenstürmen zu beobachten ist.

Tropenstürme, so zerstörerisch sie auch sein können, sind grundsätzlich recht anfällige, wenn nicht manchmal sogar fragile Gebilde, die auf atmosphärische Veränderungen in der Umgebung reagieren. Erhöht sich die Windscherung (Änderung der Windgeschwindigkeit und -richtung mit der Höhe), dann erfolgt nicht selten eine Abschwächungsphase. Wird eine trockenere Luftmasse zum Zentrum des Sturmes geführt, dann schwächelt die Konvektion und somit auch das gesamte System und natürlich muss auch eine nachhaltige (negative) Beeinflussung beim Kontakt mit einer Landmasse oder Insel erwähnt werden.

Doch selbst wenn all diese Bedingungen nicht gegeben sind und der Tropensturm in einer scherungsarmen und feuchten Umgebung über sehr warmes Meereswasser zieht, unterläuft das System trotzdem Intensitätsschwankungen. Diese werden durch innere dynamische Prozesse hervorgerufen. Dabei handelt es sich um sogenannte „eyewall replacement cycles“, oder auf Deutsch und etwas freier übersetzt: „ein oder mehrere Zyklen, die die bestehende Augenwand ersetzen“.

Die Augenwand ist ein Teil der Dynamik, die einen Tropensturm ausmacht. Dank eines sich immer weiter vertiefenden Kerndrucks des Systems etabliert sich ein sogenannter „inflow“, also eine Strömung mit warmer und feuchter Luft, die mehr oder weniger direkt ins Zentrum des Sturmes gerichtet ist. Diese Luftmasse ist labil geschichtet und somit bereit zum Aufsteigen. Das gelingt ihr in der Nähe zum Zentrum des Sturms, wo die Luftmasse zum Aufsteigen gezwungen wird und sich mächtige Schauer- und Gewitterwolken bilden. Direkt über dem Zentrum entwickelt sich eine Art Ausgleichsströmung, die sich durch kräftiges Absinken auszeichnet. Dank starker Abtrocknung bildet sich dadurch das typische wolkenarme oder gar wolkenfreie Auge aus. Hier ist der Wind kaum zu spüren, während dieser nur wenige Kilometer entfernt innerhalb der Augenwand mit Böenspitzen deutlich jenseits der Orkanschwelle tobt. Wer die Passage eines solchen Auges erlebt hat, der sieht an dessen Rand, dass die kräftigen Schauer und Gewitter drohend wie eine riesige Wand das Auge umrahmen, weshalb dieser Bereich auch als Augenwand (engl. eyewall) bezeichnet wird. Wer sich das mal bildlich anschauen möchte, kann das im  gerne machen.

Nun kommt es immer wieder vor, dass sich die zentrumsnahe Augenwand abschwächt und sich eine zweite, weiter vom Zentrum entfernte Augenwand entwickelt. Vermutungen, wie dieser Prozess abläuft, gibt es viele, doch bis heute ist dieser Prozess Gegenstand intensiver Forschung. Folgende Ansätze gibt es zu nennen:

Sollte der Augendurchmesser zu klein werden, dann verliert die Konvektion irgendwann an Struktur/Organisation und es bildet sich eine neue Augenwand aus.

Eine andere Option besagt, wenn die Windgeschwindigkeit zu hoch wird, kommt es irgendwann zu einem turbulenten Zusammenbruch des Windfeldes. Dieser Zusammenbruch schwächt wiederum die Augenwand ab. Eine Neubildung erfolgt dann in dem Bereich, wo das Windfeld nicht so turbulent ist, was in größerer Entfernung zum Zentrum des Sturms der Fall ist.

Die letzte Variante ist die, dass eine Zunahme der Konvektion außerhalb der inneren Augenwand so viel Feuchtigkeit und Energie benötigt, dass diese der ersten Augenwand fehlen. Diese Entwicklung führt dann letztendlich zum Zusammenbruch der inneren Augenwand.
Welche dieser Varianten letztendlich der Wahrheit entspricht oder ob es gar eine Mischung aus all diesen Varianten ist, wird sich in Zukunft mit weiteren Messkampagnen sicherlich noch zeigen.

Was sind denn die Folgen eines solchen Zyklus? Die erste Konsequenz ist ein Abschwächen des Tropensturms bzw. ein Ansteigen des Kerndrucks, da der Motor des Systems vorübergehend gestört wird. Wenn sich die Konvektion in Folge des Zyklus abschwächt, dann erfolgt auch ein geringerer Eintrag latenter Wärmeenergie (Link 1) und in der Folge kann sich ein Tropensturm um eine, manchmal auch um mehrere Kategorien auf der Saffir-Simpson Skala abschwächen. Für die leidgeplagte Bevölkerung, die im Weg eines solchen Tropensturms steht, ist das natürlich erstmal eine günstige Entwicklung. Weniger schön jedoch ist, dass sich das Windfeld bei solch einem Zyklus nicht selten dramatisch ausweitet, sodass z.B. das Risiko einer beträchtlichen Sturmflut deutlich zunehmen kann.

Doch schauen wir uns diesen Prozess mal an Hand von Bildern an:

DWD Ein Zyklus der das Auge tropischer Stuerme mit der Zeit veraendert

Im Satellitenbild vom 23.09.2018 erkennt man, dass der Taifun TRAMI ein sehr kleines und kompaktes Auge besitzt. Rund 24 h später hat sich das Erscheinungsbild des zukünftigen Supertaifuns grundlegend geändert. Der Augendurchmesser hat sich dramatisch vergrößert. TRAMI war eines der Systeme, die es geschafft haben, dass sich der “eyewall replacement cycle” kaum auf die Intensität des Sturmes ausgewirkt hat. Allerdings erkennt man im rechten Bild, dass sich die Wolkenoberflächentemperatur etwas erwärmt hat (keine gelben, nur noch rote Farben), sodass wenigstens kurzfristig Auswirkungen in Form einer geringen Abschwächung und nachlassender Organisation beobachtet werden konnten. Letztendlich aber erreichte der Sturm noch am selben Tag den Status eines Supertaifuns. Die Gründe, wieso manche Zyklen langsamer als andere und mit variablen Intensitätsschwankungen ablaufen, sind übrigens noch nicht geklärt.

DWD Ein Zyklus der das Auge tropischer Stuerme mit der Zeit veraendert 1

Um durch die Wolken und auf das Windfeld von TRAMI zu schauen, benutzen wir ein Mikrowellenradar, das von einem (polarumlaufenden) Satelliten von oben auf den Sturm schaut. Auch hier erkennt man die dramatische Vergrößerung des Auges. Behält man die rote Farbe (Windgeschwindigkeiten von 30 m/s oder mehr) im Auge, dann erkennt man vom 25.09. zum 28.09. eine Aufweitung des Windfeldes (auch abseits der Tatsache, dass ein variabler Zoom verwendet wurde) – weitere Augenwandzyklen beeinflussten TRAMI also auch während dieser Zeit. Leider liegen für den 23. und 24. September keine Messdaten vor, denn es ist immer ein Glücksfall, wenn solch ein Sturm die vergleichsweise enge Spur eines Satelliten kreuzt.

DWD Ein Zyklus der das Auge tropischer Stuerme mit der Zeit veraendert 2

Als ein Glücksfall können die Ereignisse bezeichnet werden, wo so ein Zyklus vom (normalen) Radar aus verfolgt werden kann (was dann aber leider auch eine gewisse Nähe des Sturms zum Festland bedeutet). Dies geschah z.B. 2022 beim Hurrikan IAN, der über das westliche Kuba in Richtung Florida zog. In a) erkennt man eine dominante Augenwand, die jedoch wenig später in b) zunehmend von einer zweiten Augenwand umrahmt wurde. Das Auge weitete sich in der Folge in c) immer weiter auf und die zweite Augenwand entwickelte sich zur dominanten, während die erste regelrecht auseinanderbrach. Letztendlich erfolgte dann in der Folge in d) eine erneute Intensivierungsphase des Hurrikans direkt vor Landgang in Florida zu einem Kategorie 5 Sturm auf der fünfteiligen Intensitätsskala. Diesem Sturm fielen über 160 Menschen zum Opfer und der hier besprochene Zyklus der Augenwand sorgte im Vorhersagebetrieb für zahlreiche Probleme und Überraschungen mit Blick auf die finale Intensitätsabschätzung.

Werkzeuge zur Vorhersage der Zyklen gibt es mittlerweile genug, doch leider bringt einem das beste Werkzeug wenig, wenn der physikalische Ablauf, der dahintersteckt, bisher nur lückenhaft bekannt ist. Somit ergeben sich auch heutzutage immer wieder kritische Fälle, wenn z.B. wie bei Hurrikan IAN ein Tropensturm kurz vor Landgang steht und sich die Frage stellt, ob ein Augenwandzyklus für eine Abschwächung sorgen könnte, oder eben nicht. Dahingehend wird es sicherlich noch sehr viel Forschungs- und Modellierungsarbeit geben und vielleicht gelingt es irgendwann, diese Zyklen besser vorherzusagen. Was für den Moment jedoch für den Beobachter bleibt, ist aber die Faszination der Veränderlichkeit des Aussehens, die solche Zyklen bei kräftigen Tropenstürmen hervorrufen können.

Dipl. Met. Helge Tuschy
Deutscher Wetterdienst
Vorhersage- und Beratungszentrale
Offenbach, den 21.10.2023
Copyright (c) Deutscher Wetterdienst

Die Smigielski – Mogil – Burt Vorhersagetechnik für außertropische Tiefdruckgebiete

Im Thema des Tages vom 04.02.2023 wurde bereits eine Vorhersagetechnik vorgestellt, mit der man anhand von Satellitenbildern die Intensität tropischer Stürme ermitteln kann. Dabei zeigte sich, dass diese Technik ihre Stärken und Schwächen hat, jedoch bis heute trotz des Fortschritts in der Vorhersagetechnik nicht aus dem operationellen Dienst wegzudenken ist.

Heute soll eine davon abgewandelte Technik vorgestellt werden, die zwar in den Außertropen bei weitem nicht so häufig im operationellen Dienst angewandt wird, wie die Dvorak Technik in tropischen Gefilden, doch auch sie hat ihre Bewandtnis und Stärke. Der Fokus dieser Technik liegt auf der Intensitätsbestimmung der uns bekannten Herbststürme u.a. im Nordatlantik. Es handelt sich um die sogenannte „Smigielski – Mogil – Burt Vorhersagetechnik, kurz: SMB Technik.

Sie wurde in den 80-iger Jahren entwickelt und somit zu der Zeit, wo Herr Dvorak mit seiner Vorhersagetechnik beim Vorhersagedienst in (sub)tropischen Bereichen immer mehr an Beachtung gewann. In der Tat wurden einige Ansätze der Dvorak-Vorhersagetechnik mit eingebaut und verschmolzen mit Beobachtungen u.a. von Junker und Haller. Diese beiden Meteorologen versuchten bereits 1980 eine sinnvolle Abschätzung des Bodendrucks an Hand von bestimmten Wolkenmustern im Satellitenbild zu erstellen. Die SMB Technik kann daher als eine Verschmelzung des Wissens von unterschiedlichen Meteorologen und Vorhersagegebieten angesehen werden.

Der Nutzen dieser Technik liegt damals wie heute auf der Hand: die Meere sind vergleichsweise datenarme Regionen mit Blick auf reale Messungen. Natürlich werden mittlerweile alle Bereiche mehr oder weniger häufig von Satellitenmessungen abgedeckt, die jedoch ebenfalls ihre (Mess)Unschärfen haben. Viele dieser Messungen finden zudem auf polarumlaufenden Satelliten statt, die einen vergleichsweise kleinen Bereich mit sehr geringer zeitlicher Auflösung abdecken. Schiffe, die Meldungen vom aktuellen Wetter übermitteln könnten, meiden verständlicherweise die Regionen, wo es für uns Meteorologen erst so richtig spannend und interessant wird bzw. wo sich innerhalb der Numerik durch erhöhte Ungenauigkeiten numerische Fehler entwickeln können. Die SMG Technik erlaubt es einem Meteorologen mit vergleichsweise geringem Aufwand ggf. diese Lücken zu überbrücken.

Nach der Durchsicht von Satellitenbildern von mehr als 60 Winterstürmen zwischen Oktober und April auf der Nordhemisphäre ergab sich ein einheitlicher Ablauf, wo grob gesagt eine Zunahme mehrschichtiger Bewölkung um ein Tiefzentrum (verstärkte hochreichende Hebung) sowie eine zunehmende Krümmung dieser Bewölkung für eine Intensivierung des Tiefdruckgebiets sprach. Verifiziert wurde die Technik mithilfe jedmöglicher Daten, die in der Nähe oder zentrumsnah ermittelt wurden (Bojen, Schiffsmeldungen, Landstationen et cetera). Anhand dieser Daten und physikalisch nachvollziehbaren Extrapolationen konnte man sehr häufig die durch die SMB Technik ermittelten Werte verifizieren bzw. falsifizieren. Um nicht die Auswertung der SMB Technik zugunsten dieser Stationen zu verfälschen, fand der Werteabgleich zwischen Messung und SMB Technik erst nach deren Durchführung statt.

Die grobe Annahme in dieser Technik ist die, dass wenn sich ein Tiefdruckgebiet entwickelt, sich dieses nach einem nachvollziehbaren Muster bis zum Reifestadium weiterentwickelt. Dank dieser Annahme war es nun auch möglich u.a. Entscheidungsbäume zu erstellen, die man in der Folge an jedem außertropischen System anwenden konnte. Ein solcher wurde mal eingefügt.

DWD Die Smigielski – Mogil – Burt Vorhersagetechnik fuer aussertropische Tiefdruckgebiete

Ohne jetzt zu tief in die Handhabe dieser Technik einsteigen zu wollen, so fällt auf, dass einer bestimmten Wolkenstruktur des Tiefdruckgebietes ein entsprechender Luftdruckwert (mittig im Bild und rot umrandet) zugeordnet wurde. Je besser der Wolkenwirbel ausgeprägt ist, umso
tiefer wird dessen Kerndruck angesetzt.

Auch hier ist das Hauptwerkzeug die sogenannte „logarithmische Spirale“, mit der bei der Dvorak-Technik das Ausmaß der gekrümmten Konvektionsbänder für die Intensitätsbestimmung bei tropischen Stürmen ermittelt wird. Wie bereits erwähnt, deutet die Krümmung der Bewölkung auch bei den außertropischen Tiefdruckgebieten eine Intensitätsänderung an. Je stärker gekrümmt, umso intensiver das System, weshalb auch hier eine Verwendung diese Spirale möglich ist. Je stärker das Tiefdruckgebiet ist, umso größer sind die Werte der Vorticity
und umso besser bilden sich bestimmte Wolkenstrukturen aus, die um das Zentrum des Sturms angeordnet und repräsentativ für die Intensität des Tiefs sind. Natürlich ist das nur ein Teil der Geschichte/SMB Technik, aber bereits ausreichend,
um sich an ein Beispiel heranzuwagen.

Schauen wir uns mal einen Wetterfall an, der vor wenigen Wochen im September dieses Jahres auftrat. Am 27.09. entwickelte sich über dem östlichen zentralen Nordatlantik ein kräftiges Sturmtief, das in der Folge unter Abschwächung nach Irland zog und auf den Namen KILIAN (international AGNES) getauft wurde. Betrachten wir nun mal die von unterschiedlichen Wetterdiensten durchgeführte Intensitätsabschätzung zum 00 UTC Termin für diesen Tag, so wurden Werte von 968 hPa, 970 hPa und 980 hPa analysiert. Kann hier die SMB Technik etwas Licht ins Dunkle bringen, wer hier näher an der vermeintlichen Wahrheit lag? Das Satellitenbild sollte helfen.

DWD Die Smigielski – Mogil – Burt Vorhersagetechnik fuer aussertropische Tiefdruckgebiete 1

Im Bild links und in der Mitte ist das Wasserdampfbild abgebildet, wobei das linke Bild die oberen Bereiche und das mittlere die tieferen Bereiche der Troposphäre zeigt. Je roter/schwärzer, umso trockener ist die Luftmasse. Rechts ist das RGB – Wolken Tag und Nacht-Bild eingebaut. Je weißer die Farbe, umso hochreichender (vereister) ist die Bewölkung.

Es ist eindrücklich zu erkennen, dass KILIAN zu diesem Zeitpunkt ein veritables Sturmtief war, denn besonders im rechten Bild erkennt man einen wunderschönen Wolkenkringel. Wenden wir nun die SMB Technik an.

DWD Die Smigielski – Mogil – Burt Vorhersagetechnik fuer aussertropische Tiefdruckgebiete 2

Dazu setzen wir die logarithmische Spirale auf das Satellitenbild und rotieren sie so lange, bis sie alle wichtigen Bereiche abdeckt. Anschließend muss man nur noch die Zehntel der Spirale abzählen zwischen dem Beginn des gekrümmten Wolkenkringels (in der Meteorologie dank seines Aussehens als der „Hammerkopf“ bezeichnet) und dem Bereich, wo sich die Spirale dem rückseitigen Ende des baroklinen Bandes parallel nähert. In diesem Fall können wir auch die Vorderseite des Bandes nehmen, dank seiner parallelen Ausrichtung. Nun erhalten wir einen Wert von 7.5 Zehntel und wenn man das mit dem Entscheidungsbaum abgleicht (rechts oben) kommen wir auf rund 970 hPa (abzüglich 1 oder 2 hPa, da der Kommakopf weiter anwächst und sich dem 8. Zehntel nähert). Von daher ist eine Intensitätsabschätzung von rund 970 hPa sehr plausibel und wurde gegen 11 Uhr MESZ von der Boje K2 mit etwas unter 970 hPa bestätigt (zu dem Zeitpunkt bereits wieder auffüllend).

Wofür ist diese Technik heutzutage also noch gut? Zunächst muss man im Hinterkopf behalten, dass die Technik trotz ihrer Stärken nur eine Näherung darstellt und in einigen Fällen auch versagen kann (wenn z.B. eine Tiefdruckentwicklung nicht nach einem typischen Schema abläuft). Im besten Fall kann man sein Ergebnis mit realen Messwerten vergleichen und ggf. den abgeschätzten Wert anpassen. Die Stärke dieser Technik, auch in der heutigen, technisch beinahe schon überfrachteten Zeit, ist aber vor allem in der einfachen Handhabung zu finden, denn mit nur einem Bild und dem Wissen der bisherigen Entwicklung lassen sich recht schnell gute Intensitätsabschätzungen erzielen. Selbst heute kann man dann z.B. abschätzen, inwieweit die Realität im Satellitenbild mit der numerischen Interpretation übereinstimmt und inwieweit den numerischen Vorhersagen zu trauen ist. Vor allem für marine Vorhersagen/Schiffsberatungen in datenarmen Bereichen ist diese Vorhersagetechnik von daher sicherlich von Interesse, insbesondere wenn auf den Schiffen nur eine begrenzte Datenübermittlung möglich ist.

Dipl. Met. Helge Tuschy
Deutscher Wetterdienst
Vorhersage- und Beratungszentrale
Offenbach, den 12.10.2023
Copyright (c) Deutscher Wetterdienst