Schlagwortarchiv für: Wellen

Wenn Atmosphärische Flüsse das Meereiswachstum zum Stillstand bringen ….

Kurz nach unserer letzten Analyse an dieser Stelle (siehe Thema des Tages vom 11.09.2023) wurde Mitte September das jährliche arktische Meereisminimum mit 4,33 Millionen Quadratkilometer erreicht und nahm damit den siebten Platz in der Messreihe der geringsten Meereisausdehnung ein, die seit 1979 mittels Satellitendaten kontinuierlich erfasst wird. Im Vergleich zum vieljährigen Mittel 1981-2010 rangierte die Meereisausdehnung im ganzen Jahr 2023 am unteren Rand der Spannbreite und vor allem in den Monaten August und September auch unter den Vorjahreswerten (siehe Abbildung 1). Mit dem Beginn des langen arktischen Winters hat die Ausdehnung des Meereises überdurchschnittlich stark zugenommen. Ende Oktober hatte die Eisdecke die sibirische Küste erreicht, während an den Küsten der Beaufort- und Tschuktschensee weiterhin offenes Wasser vorhanden war.

DWD Wenn Atmosphaerische Fluesse das Meereiswachstum zum Stillstand bringen … 1

Auch bis weit in den November hielt das leicht überdurchschnittliche Meereiswachstum an, wobei die Expansion vor allem in der Baffin Bay und in der südlichen Beaufortsee dominierte. Gemittelt über den Monat lag die tägliche Zunahme der Eisbedeckung bei 70.800 Quadratkilometern (langjähriges Mittel 1981-2010: 69.500 Quadratkilometer), was in etwa der Fläche Irlands entspricht. Die durchschnittliche Meereisausdehnung in der Arktis betrug im November 2023 9,66 Millionen Quadratkilometer und rangiert damit zusammen mit dem November 2006 auf dem siebtniedrigsten Rang in der 45-jährigen Satellitenaufzeichnung.

Ab dem 22. November kam das Zufrieren vorübergehend für einige Tage nahezu zum Stillstand. Ursächlich war eine vom 21. bis zum 28. November andauernde Serie von drei kräftigen Tiefdruckgebieten. Diese schlugen eine sehr ähnliche Zugbahn ein, die sich von der Nordostküste Grönlands ostwärts entlang des nördlichen Randes der Barents-, Kara- und Laptev-See erstreckte. Auf dem Weg in den Arktischen Ozean verschmolzen die Tiefs mit ihren Vorgängern, so dass ein anhaltendes zyklonales (gegen den Uhrzeigersinn rotierendes) Windsystem entstand. Sowohl der erste als auch der dritte dieser Stürme hatten ihren Ursprung in der Region des Islandtiefs, bevor sie die Ostseite Grönlands hinaufwanderten. Das zweite Tiefdrucksystem entstand unmittelbar nördlich von Grönland. Gleichzeitig entwickelte sich ein Hochdruckzentrum über dem eisfreien Teil der Barentssee aus, das vom 26. bis 28. November besonders stark wurde.

Diese Kombination aus anhaltendem Tiefdruck nördlich und westlich von Spitzbergen und einem Hochdruckzentrum im Südosten führte zu einer starken, anhaltenden Strömung sehr warmer und feuchter Luft aus dem Bereich des mittleren Nordatlantiks in Richtung Spitzbergen. Von dort drehte die Strömung dann entlang der Randeiszone nach Osten. Insgesamt begünstigte diese Konstellation die Ausdehnung eines atmosphärischen Flusses über die mittleren Breiten hinaus bis in die Arktis. Atmosphärische Flüsse sind übrigens lange, schmale Korridore, die eine große Menge Wasserdampf transportieren (für mehr Informationen zu atmosphärischen Flüssen sei auf das verwiesen). Neue Forschungsergebnisse (https://eos.org/articles/rivers-in-the-sky-are-hindering-winter-arctic-sea-ice-recovery) zeigen, dass atmosphärische Ströme immer häufiger weiter nach Norden vordringen als noch vor vier Jahrzehnten. Diese atmosphärischen Flüsse pumpen vermehrt warme und feuchte Luft in die Arktis, auch in den Wintermonaten. Sie lassen Regen auf das sich erholende arktische Meereis fallen, wenn das Eis eigentlich seinen saisonalen Höchststand erreichen soll. Zudem sind mit dem häufigeren Auftreten der atmosphärischen Flüsse höhere Windgeschwindigkeiten und auch größere Wellen verbunden, die die Eisbildung weiter behindern können. Insgesamt stehen diese neuen Erkenntnisse im Einklang mit der beobachteten Unterbrechung des saisonalen Eiswachstums Ende November.

DWD Wenn Atmosphaerische Fluesse das Meereiswachstum zum Stillstand bringen …

Nachdem die Tiefdruckserie Ende November ihr Ende fand, beschleunigte sich die tägliche Meereiszunahme wieder auf weitgehend durchschnittliche Werte. Aktuell wird die Meereisbedeckung auf 12,45 Millionen Quadratkilometer beziffert (siehe Abbildung 2). Damit entspricht die Flächenausdehnung zu Beginn der dritten Dezemberdekade in etwa denen des Vorjahres und liegt damit weiter am unteren Rand der vieljährigen Schwankungsbreite.

DWD Wenn Atmosphaerische Fluesse das Meereiswachstum zum Stillstand bringen … 2

Von der Arktis begeben wir uns noch zuletzt in die Antarktis. Wie hat sich die Meereisbedeckung in den ersten Sommermonaten (auf der Südhalbkügel herrscht derzeit Sommer) nach einem absoluten winterlichen Rekordtiefststand entwickelt? Der tägliche Eisverlust bewegte sich bis Anfang November zunächst in einem ähnlichen Bereich wie im letzten Jahr. Der Rückgang der antarktischen Meereisausdehnung hielt um den 9. November herum für einige Tage an. Dies führte erstmals seit Mai dazu, dass die Ausdehnung über dem Minimum aus dem Jahr 2016 lag. Der saisonale Rückgang nahm dann jedoch wieder zu und folgte eng dem Verlauf der rekordtiefen Tagesausdehnung von 2016.

 

DWD Wenn Atmosphaerische Fluesse das Meereiswachstum zum Stillstand bringen … 3

Aktuell fällt die Eisausdehnung im Weddellmeer- und der Kosmonautensee sowie im Rossmeer anhaltend niedrig aus, in der Bellingshausen- und Amundsensee liegt sie jedoch leicht über dem Durchschnitt der Jahre 1981 bis 2010 (siehe Abbildung 4). Ungewöhnlich warme Bedingungen über dem östlichen Weddellmeer und starke ablandige Winde direkt im Osten (an der Küste von Dronning Maud Land) führten zu einem Rückzug des Eises entlang dieser Küste und öffneten eine breite Küstenpolynja in diesem Gebiet. Das heißt der ablandige Wind treibt das Meereis von der Küste weg, wodurch es zu einer relativ beständigen, eisfreien Zone kommen kann.

M.Sc. (Meteorologe) Sebastian Altnau
Deutscher Wetterdienst
Vorhersage- und Beratungszentrale
Offenbach, den 21.12.2023

Copyright (c) Deutscher Wetterdienst

Wie hoch sind die Wellen?

Am gestrigen Samstag ist schon das zweite Orkantief innerhalb einer Woche über die Britischen Inseln zur Nordsee gezogen. Vor allem an der Südflanke der Tiefs traten stürmische Winde mit teils extremen Orkanböen auf. Vor allem die Bretagne war davon betroffen. Auf Land sorgten die starken Winde für umherfliegende Gegenstände und abbrechende Äste. Auf See generierte der starke Wind hohe Wellen.

Die Wellenhöhe hängt maßgeblich von drei Dingen ab. Zum einem von der Windgeschwindigkeit. Zum anderen von der Wirkdauer des Windes, also wie lange die höchsten Windgeschwindigkeiten anhalten. Und zuletzt noch von der Windstreichlänge, auch Fetch genannt. Der genaue Zusammenhang zwischen den drei Parametern und der signifikanten Wellenhöhe wird in Abbildung 1 dargestellt. In den vergangenen Tagen waren für die Biskaya alle drei Faktoren in ausreichendem Maße gegeben. Es gab über mehrere Stunden Windgeschwindigkeiten zwischen Sturm- und Orkanstärke, die aus westlicher Richtung über den Nordatlantik fegten. Dies alles führte zu einer sogenannten ausgereiften See. Die See gilt als ausgereift, wenn eine Erhöhung der Wirkdauer und der Streichlänge zu keinem höheren Seegang führen würde.

DWD Wie hoch sind die Wellen

Der Seegang, der in Abbildung 1 abgelesen werden kann, ist die sogenannte signifikante See. Der signifikante Seegang oder die signifikante Wellenhöhe ist eine Größe, die in ihrer Definition erst mal sehr theoretisch klingt. In der Praxis lässt sich dieser aber für geübte Seefahrer gut beobachten. Laut Definition ist der signifikante Seegang die mittlere Wellenhöhe des höchsten Drittels aller Wellen in einem Seegebiet. Dabei ist das Seegebiet mindestens 10 auf 10 Kilometer groß. Die Wellen werden zudem in einem repräsentativen Zeitraum beobachtet. Das heißt, wenn man 300 Wellen beobachtet, werden die kleinsten 200 Wellen ignoriert. Aus den höchsten 100 Wellen wird der Mittelwert gebildet.

Bei längerer Betrachtung des Wellenbildes auf See kann man mehrere Wellen beobachten. Zum einen gibt es die Windsee. Das sind die Wellen, die direkt von der Kraft des Windes generiert werden und sich immer in Windrichtung ausbreiten. Da es Schwankungen in der Windgeschwindigkeit gibt, weist die Windsee selbst bereits eine Wellenverteilung auf. Keine Welle gleicht exakt der anderen. Zum anderen sieht man unter Umständen auch Dünungswellen, die aus unterschiedlicher Richtung und mit unterschiedlichen Wellenlängen kommen können. Die Dünung ist quasi eine „alte“ Windsee. Von entfernten Sturmgebieten laufen die Dünungswellen unabhängig von der Windrichtung über das Meer. Dünungswellen sind zudem in ihrer Höhe unabhängig vom lokalen Wind vor Ort. Alle Wellen zusammen ergeben ein Wellenspektrum. Wenn man die Wellenhöhen des Spektrums zusammenträgt, ergibt sich eine Verteilung der Wellenhöhen, die in etwa einer Rayleigh-Verteilung entspricht (Abbildung 2).

DWD Wie hoch sind die Wellen 1

Nach der theoretischen Rayleigh-Verteilung der Wellenhöhen sind also ein Großteil der tatsächlich auftretenden Wellen niedriger als der signifikante Seegang und nur wenige Wellen höher. Doch warum wird dann trotzdem der signifikante Seegang als Mess- und Vorhersagegröße herangezogen?

Operationelle Seegangsmessungen erfolgen mit verschiedenen Messinstrumenten beispielsweise an festen Bauwerken wie Offshore-Windenergieanlagen oder Ölplattformen. Traditionell gibt es auch Seegangsmessbojen die ihre Daten an Land funken. Zudem erfolgt die Beobachtung von Seegang noch manuell von erfahrenen Seeleuten auf Schiffen. Bei allen Beobachtungs- und Messmethoden wird zum einen der signifikante Seegang, wie auch die maximale Wellenhöhe erfasst. Dies wird bereits seit Jahrzehnten so praktiziert, sodass der signifikante Seegang zu einer Größe wurde, unter der sich jeder Seemann was vorstellen konnte. Der Theorie zu Folge lässt sich mit dem signifikanten Seegang auch die maximalen Einzelwellen und ihre Wahrscheinlichkeit ableiten. Jede hundertste Welle ist etwa 60 Prozent höher als die signifikante Wellenhöhe, jede tausendste Welle ist 80 Prozent höher. Gibt es in einem Seegebiet Kreuzsee, kann sich die Verteilung der Wellen nach rechts verschieben. Das heißt, wenn Windsee und Dünung im senkrechten Winkel aufeinandertreffen, kommt es häufiger zu höheren Einzelwellen, als es bei einer Rayleigh Verteilung statistisch möglich wäre. (siehe )

Nach der vielen Theorie, folgt jetzt der Blick auf die Praxis. Am vergangenen Donnerstag, den 02. November 2023 hat eine Boje vor der Küste Bretagne einen signifikanten Seegang von 11,7 Metern gemessen. Die höchste Welle maß um 20 Meter. Leider gab es einige Datenausfälle, was bei Bojen im Sturm häufiger vorkommt. Doch auch in der vergangenen Nacht hat die Messboje Oléron in der Biskaya knapp 10 Meter signifikante See gemessen. Dabei war die höchste Einzelwelle 18 Meter hoch. Ein Großteil der höheren Einzelwellen 14 bis 15 Meter hoch. In beiden Fällen entspricht die maximale Einzelwelle dem 1,8-fachem der signifikanten See. Der Großteil der Einzelwellen war 1,6 mal so hoch, wie die signifikante Wellenhöhe. Kreuzsee wurde an beiden Tagen nicht beobachtet. Es wäre schön, wenn Theorie und Praxis immer so gut übereinstimmen würden.

DWD Wie hoch sind die Wellen 2

MSc Sonja Stöckle
Deutscher Wetterdienst
Vorhersage- und Beratungszentrale
Offenbach, den 05.11.2023

Copyright (c) Deutscher Wetterdienst